More Details
-
Table of Contents:
- Cover
- Half Title Page
- Series Editor
- Title Page
- Copyright
- Series Editor's Note
- Preface
- Contents
- 1. Introduction to Missing Data
- 1.1 Chapter Overview
- 1.2 Missing Data Patterns
- 1.3 Missing Data Mechanisms
- 1.4 Diagnosing Missing Data Mechanisms
- 1.5 Auxiliary Variables
- 1.6 Analysis Example: Preparing for Missing Data Handling
- 1.7 Older Missing Data Methods
- 1.8 Comparing Missing Data Methods via Simulation
- 1.9 Planned Missing Data
- 1.10 Power Analyses for Planned Missingness Designs
- 1.11 Summary and Recommended Readings
- 2. Maximum Likelihood Estimation
- 2.1 Chapter Overview
- 2.2 Probability Distributions versus Likelihood Functions
- 2.3 The Univariate Normal Distribution
- 2.4 Estimating Unknown Parameters
- 2.5 Getting an Analytic Solution
- 2.6 Estimating Standard Errors
- 2.7 Information Matrix and Parameter Covariance Matrix
- 2.8 Alternative Approaches to Estimating Standard Errors
- 2.9 Iterative Optimization Algorithms
- 2.10 Linear Regression
- 2.11 Significance Tests
- 2.12 Multivariate Normal Data
- 2.13 Categorical Outcomes: Logistic and Probit Regression
- 2.14 Summary and Recommended Readings
- 3. Maximum Likelihood Estimation with Missing Data
- 3.1 Chapter Overview
- 3.2 The Multivariate Normal Distribution Revisited
- 3.3 How Do Incomplete Data Records Help?
- 3.4 Standard Errors with Incomplete Data
- 3.5 The Expectation Maximization Algorithm
- 3.6 Linear Regression
- 3.7 Significance Testing
- 3.8 Interaction Effects
- 3.9 Curvilinear Effects
- 3.10 Auxiliary Variables
- 3.11 Categorical Outcomes
- 3.12 Summary and Recommended Readings
- 4. Bayesian Estimation
- 4.1 Chapter Overview
- 4.2 What Makes Bayesian Statistics Different?
- 4.3 Conceptual Overview of Bayesian Estimation
- 4.4 Bayes' Theorem
- 4.5 The Univariate Normal Distribution
- 4.6 MCMC Estimation with the Gibbs Sampler
- 4.7 Estimating the Mean and Variance with MCMC
- 4.8 Linear Regression
- 4.9 Assessing Convergence of the Gibbs Sampler
- 4.10 Multivariate Normal Data
- 4.11 Summary and Recommended Readings
- 5. Bayesian Estimation with Missing Data
- 5.1 Chapter Overview
- 5.2 Imputing an Incomplete Outcome Variable
- 5.3 Linear Regression
- 5.4 Interaction Effects
- 5.5 Inspecting Imputations
- 5.6 The Metropolis-Hastings Algorithm
- 5.7 Curvilinear Effects
- 5.8 Auxiliary Variables
- 5.9 Multivariate Normal Data
- 5.10 Summary and Recommended Readings
- 6. Bayesian Estimation for Categorical Variables
- 6.1 Chapter Overview
- 6.2 Latent Response Formulation for Categorical Variables
- 6.3 Regression with a Binary Outcome
- 6.4 Regression with an Ordinal Outcome
- 6.5 Binary and Ordinal Predictor Variables
- 6.6 Latent Response Formulation for Nominal Variables
- 6.7 Regression with a Nominal Outcome
- 6.8 Nominal Predictor Variables
- 6.9 Logistic Regression
- 6.10 Summary and Recommended Readings
-
Language Notes:
- Item content: English
-
General Notes:
- Description based on: Print version of record.
Description based on: Print version record.
-
Physical Description:
- 1 online resource (564 pages).
-
Digital Characteristics:
- text file
-
Call Numbers:
- HA29 .E497 2022eb
-
ISBNs:
- 9781462550005 (electronic bk.)
1462550002
-
OCLC Numbers:
- 1334891006