Mittag-Leffler functions, related topics and applications
Rudolf Gorenflo [and 3 others]
- Resource Type:
- E-Book
- Publication:
- Heidelberg ; New York : Springer, [2014]
- Related Series:
More Details
- Table of Contents:
- Machine generated contents note: 2.1. Few Biographical Notes on Gosta Magnus Mittag-Leffier
- 2.2. Contents of the Five Papers by Mittag-Leffier on New Functions
- 2.3. Further History of Mittag-Leffler Functions
- 3.1. Definition and Basic Properties
- 3.2. Relations to Elementary and Special Functions
- 3.3. Recurrence and Differential Relations
- 3.4. Integral Representations and Asymptotics
- 3.5. Distribution of Zeros
- 3.6. Further Analytic Properties
- 3.7. Mittag-Leffier Function of a Real Variable
- 3.7.1. Integral Transforms
- 3.7.2. Complete Monotonicity Property
- 3.7.3. Relation to Fractional Calculus
- 3.8. Historical and Bibliographical Notes
- 3.9. Exercises
- 4.1. Series Representation and Properties of Coefficients
- 4.2. Explicit Formulas: Relations to Elementary and Special Functions
- 4.3. Differential and Recurrence Relations
- 4.4. Integral Relations and Asymptotics
- 4.5. Two-Parametric Mittag-Leffler Function as an Entire Function
- 4.6. Distribution of Zeros
- 4.7. Computations with the Two-Parametric Mittag-Leffler Function
- 4.8. Extension for Negative Values of the First Parameter
- 4.9. Further Analytic Properties
- 4.10. Two-Parametric Mittag-Leffler Function of a Real Variable
- 4.10.1. Integral Transforms of the Two-Parametric Mittag-Leffler Function
- 4.10.2. Complete Monotonicity Property
- 4.10.3. Relations to the Fractional Calculus
- 4.11. Historical and Bibliographical Notes
- 4.12. Exercises
- 5.1. Prabhakar (Three-Parametric Mittag-Leffler) Function
- 5.1.1. Definition and Basic Properties
- 5.1.2. Integral Representations and Asymptotics
- 5.1.3. Integral Transforms of the Prabhakar Function
- 5.1.4. Fractional Integrals and Derivatives of the Prabhakar Function
- 5.1.5. Relations to the Wright Function, H-Function and Other Special Functions
- 5.2. Generalized (Kilbas[—]Saigo) Mittag-Leffler Type Functions
- 5.2.1. Definition and Basic Properties
- 5.2.2. Order and Type of the Entire Function Eα,m,l(z)
- 5.2.3. Recurrence Relations for Eα,m,l(z)
- 5.2.4. Connection of En,m,l(z) with Functions of Hypergeometric Type
- 5.2.5. Differentiation Properties of En,m,l(z)
- 5.2.6. Fractional Integration of the Generalized Mittag-Leffler Function
- 5.2.7. Fractional Differentiation of the Generalized Mittag-Leffler Function
- 5.3. Historical and Bibliographical Notes
- 5.4. Exercises
- 6.1. Four-Parametric Mittag-Leffler Function: Luchko[—]Kilbas[—]Kiryakova's Approach
- 6.1.1. Definition and Special Cases
- 6.1.2. Basic Properties
- 6.1.3. Integral Representations and Asymptotics
- 6.1.4. Extended Four-Parametric Mittag-Leffler Functions
- 6.1.5. Relations to the Wright Function and the H-Function
- 6.1.6. Integral Transforms of the Four-Parametric Mittag-Leffler Function
- 6.1.7. Integral Transforms with the Four-Parametric Mittag-Leffler Function in the Kernel
- 6.1.8. Relations to the Fractional Calculus
- 6.2. Mittag-Leffler Functions with 2n Parameters
- 6.2.1. Definition and Basic Properties
- 6.2.2. Representations in Terms of Hypergeometric Functions
- 6.2.3. Integral Representations and Asymptotics
- 6.2.4. Extension of the 2n-Parametric Mittag-Leffler Function
- 6.2.5. Relations to the Wright Function and to the H-Function
- 6.2.6. Integral Transforms with the Multi-parametric Mittag-Leffler Functions
- 6.2.7. Relations to the Fractional Calculus
- 6.3. Historical and Bibliographical Notes
- 6.4. Exercises
- 7.1. Fractional Order Integral Equations
- 7.1.1. Abel Integral Equation
- 7.1.2. Other Integral Equations Whose Solutions Are Represented via Generalized Mittag-Leffler Functions
- 7.2. Fractional Ordinary Differential Equations
- 7.2.1. Fractional Ordinary Differential Equations with Constant Coefficients
- 7.2.2. Ordinary FDEs with Variable Coefficients
- 7.2.3. Other Types of Ordinary Fractional Differential Equations
- 7.3. Differential Equations with Fractional Partial Derivatives
- 7.3.1. Cauchy-Type Problems for Differential Equations with Fractional Partial Derivatives
- 7.3.2. Cauchy Problem for Differential Equations with Fractional Partial Derivatives
- 7.4. Historical and Bibliographical Notes
- 7.5. Exercises
- 8.1. Fractional Relaxation and Oscillations
- 8.1.1. Simple Fractional Relaxation and Oscillation
- 8.1.2. Composite Fractional Relaxation and Oscillations
- 8.2. Examples of Applications of the Fractional Calculus in Physical Models
- 8.2.1. Linear Visco-Elasticity
- 8.2.2. Other Deterministic Fractional Models
- 8.3. Historical and Bibliographical Notes
- 8.3.1. General Notes
- 8.3.2. Notes on Fractional Differential Equations
- 8.3.3. Notes on the Fractional Calculus in Linear Viscoelasticity
- 8.4. Exercises
- 9.1. Introduction
- 9.2. Mittag-Leffler Process According to Pillai
- 9.3. Elements of Renewal Theory and Continuous Time Random Walk (CTRW)
- 9.3.1. Renewal Processes
- 9.3.2. Continuous Time Random Walk (CTRW)
- 9.3.3. Renewal Process as a Special CTRW
- 9.4. Poisson Process and Its Fractional Generalization (the Renewal Process of Mittag-Leffler Type)
- 9.4.1. Mittag-Leffler Waiting Time Density
- 9.4.2. Poisson Process
- 9.4.3. Renewal Process of Mittag-Leffler Type
- 9.4.4. Thinning of a Renewal Process
- 9.5. Fractional Diffusion Process
- 9.5.1. Renewal Process with Reward
- 9.5.2. Limit of the Mittag-Leffler Renewal Process
- 9.5.3. Subordination in the Space-Time Fractional Diffusion Equation
- 9.5.4. Rescaling and Respeeding Concept Revisited: Universality of the Mittag-Leffler Density
- 9.6. Historical and Bibliographical Notes
- 9.7. Exercises
- A.1. Gamma Function
- A.1.1. Analytic Continuation
- A.1.2. Graph of the Gamma Function on the Real Axis
- A.1.3. Reflection or Complementary Formula
- A.1.4. Multiplication Formulas
- A.1.5. Pochhammer's Symbols
- A.1.6. Hankel Integral Representations
- A.1.7. Notable Integrals via the Gamma Function
- A.1.8. Asymptotic Formulas
- A.1.9. Infinite Products
- A.2. Beta Function
- A.2.1. Euler's Integral Representation
- A.2.2. Symmetry
- A.2.3. Trigonometric Integral Representation
- A.2.4. Relation to the Gamma Function
- A.2.5. Other Integral Representations
- A.2.6. Notable Integrals via the Beta Function
- A.3. Historical and Bibliographical Notes
- A.4. Exercises
- B.1. Definition and Series Representations
- B.2. Growth of Entire Functions: Order, Type and Indicator Function
- B.3. Weierstrass Canonical Representation: Distribution of Zeros
- B.4. Entire Functions of Completely Regular Growth
- B.5. Historical and Bibliographical Notes
- B.6. Exercises
- C.1. Fourier Type Transforms
- C.2. Laplace Transform
- C.3. Mellin Transform
- C.4. Simple Examples and Tables of Transforms of Basic Elementary and Special Functions
- C.5. Historical and Bibliographical Notes
- C.6. Exercises
- D.1. Definition: Contour of Integration
- D.2. Asymptotic Methods for the Mellin[—]Barnes Integral
- D.3. Historical and Bibliographical Notes
- D.4. Exercises
- E.1. Introduction to the Riemann[—]Liouville Fractional Calculus
- E.2. Liouville[—]Weyl Fractional Calculus
- E.3. Abel[—]Riemann Fractional Calculus
- E.3.1. Abel[—]Riemann Fractional Integrals and Derivatives
- E.4. Caputo Fractional Calculus
- E.4.1. Caputo Fractional Derivative
- E.5. Riesz[—]Feller Fractional Calculus
- E.5.1. Riesz Fractional Integrals and Derivatives
- E.5.2. Feller Fractional Integrals and Derivatives
- E.6. Grünwald[—]Letnikov Fractional Calculus
- E.6.1. Grünwald[—]Letnikov
- Approximation in the Riemann[—]Liouville Fractional Calculus
- E.6.2. Grünwald[—]Letnikov Approximation in the Riesz[—]Feller Fractional Calculus
- E.7. Historical and Bibliographical Notes
- F.1. Hypergeometric Functions
- F.1.1. Classical Gauss Hypergeometric Functions
- F.1.2. Euler Integral Representation: Mellin[—]Barnes Integral Representation
- F.1.3. Basic Properties of Hypergeometric Functions
- F.1.4. Hypergeometric Differential Equation
- F.1.5. Kummer's and Tricomi's Confluent Hypergeometric Functions
- F.1.6. Generalized Hypergeometric Functions and Their Properties
- F.2. Wright Functions
- F.2.1. Classical Wright Function
- F.2.2. Mellin[—]Barnes Integral Representation and Asymptotics
- F.2.3. Bessel[—]Wright Function: Generalized Wright Functions and Fox[—]Wright Functions
- F.3. Meijer G-Functions
- F.3.1. Definition via Integrals: Existence
- F.3.2. Basic Properties of the Meijer G-Functions
- F.3.3. Special Cases
- F.3.4. Relations to Fractional Calculus
- F.3.5. Integral Transforms of G-Functions
- F.4. Fox H-Functions
- F.4.1. Definition via Integrals: Existence
- F.4.2. Series Representations and Asymptotics: Recurrence Relations
- F.4.3. Special Cases
- F.4.4. Relations to Fractional Calculus
- F.4.5. Integral Transforms of H-Functions
- F.5. Historical and Bibliographical Notes
- F.6. Exercises.
- Author/Creator:
- Gorenflo, Rudolf , author
- Languages:
- English
- Language Notes:
- Item content: English
- Related Series:
- Subjects:
- General Notes:
- Includes bibliographical references and index.
Description based on: Online resource; title from PDF title page (SpringerLink, viewed November 6, 2014). - Physical Description:
- 1 online resource.
- Call Numbers:
- QA431 .G67 2014eb
- ISBNs:
- 9783662439302 (electronic bk.)
3662439301 (electronic bk.)
9783662439296 [Invalid] - OCLC Numbers:
- 894508489
- Other Control Numbers:
- EBC1967828 (source: MiAaPQ)
[Unknown Type]: ybp12143790